27,123 research outputs found

    Stellar Populations and Ages of M82 Super Star Clusters

    Get PDF
    We present high signal-to-noise optical spectra of two luminous super star clusters in the starburst galaxy M82. The data for cluster F and the nearby, highly reddened cluster L were obtained with the William Herschel Telescope (WHT) at a resolution of 1.6A. The blue spectrum (3250-5540A) of cluster F shows features typical of mid-B stars. The red spectra (5730-8790A) of clusters F and L show the Ca II triplet and numerous F and G-type absorption features. Strong Ca II and Na I interstellar absorption lines arising in M82 are also detected, and the 6283A diffuse interstellar band appears to be present. The quality of the WHT spectra allows us to considerably improve previous age estimates for cluster F. By comparing the blue spectrum with theoretical model cluster spectra using the PEGASE spectral synthesis code (Fioc & Rocca-Volmerange 1997), we derive an age of 60+/-20 Myr. The strength of the Ca II triplet is also in accord with this age. Cluster L appears to have a similar age, although this is much less certain. The measured radial velocities for the two clusters differ substantially, indicating that they are located in different regions of the M82 disk. Cluster F appears to be deep in M82, slightly beyond the main starburst region while the highly obscured cluster L lies near the outer edges of the disk. We derive an absolute V magnitude of -16.5 for F indicating that it is an extremely massive cluster. The presence of such a luminous super star cluster suggests that the M82 starburst experienced an episode of intense star formation approximately 60 Myr ago.Comment: 10 pages and 5 figures for publication in MNRA

    Passive mode locking of buried heterostructure lasers with nonuniform current injection

    Get PDF
    In this letter we report on a novel method to passively mode lock a semiconductor laser. We present experimental results of GaAlAs buried heterostructure semiconductor laser with a split contact coupled to an external cavity. The split contact structure is used to introduce a controllable amount of saturable absorption which is necessary to initiate passive mode locking. Unlike previous passive mode locking techniques, the method presented does not rely on absorption introduced by damaging the crystal and is consequently inherently more reliable. We have obtained pulses with a full width at half-maximum of 35 ps at repetition frequencies between 500 MHz and 1.5 GHz

    Streamwise forced oscillations of circular and square cylinders

    Get PDF
    The modification of a cylinder wake by streamwise oscillation of the cylinder at the vortex shedding frequency of the unperturbed cylinder is reported. Recent numerical simulations [J. S. Leontini, D. Lo Jacono, and M. C. Thompson, “A numerical study of an inline oscillating cylinder in a free stream,” J. Fluid Mech. 688, 551–568 (2011)] showed that this forcing results in the primary frequency decreasing proportionally to the square of the forcing amplitude, before locking to a subharmonic at higher amplitudes. The experimental results presented here show that this behavior continues at higher Reynolds numbers, although the flow is three-dimensional. In addition, it is shown that this behavior persists when the body is a square cross section, and when the frequency of forcing is detuned from the unperturbed cylinder shedding frequency. The similarity of the results across Reynolds number, geometry, and frequency suggests that the physical mechanism is applicable to periodic forcing of the classic von Ka ́rma ́n vortex street, regardless of the details of the body which forms the street

    First National Conference on Design and Technology Education Research and Curriculum Development (DATER 88)

    Get PDF
    The first National Conference on Design and Technology Educational Research and Curriculum Development was organised by, and held in, the Department of Design and Technology at Loughborough University of Technology on the 15th-16th April 1988. Judging by the comments during the conference and correspondence since, it was seen as a very important initiative and very successful first conference. This brief article outlines the author's reasons for mounting this major new initiative, its structure and discusses the initial proposals received so far and plans for the future

    Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems?

    Full text link
    We study the power of closed timelike curves (CTCs) and other nonlinear extensions of quantum mechanics for distinguishing nonorthogonal states and speeding up hard computations. If a CTC-assisted computer is presented with a labeled mixture of states to be distinguished--the most natural formulation--we show that the CTC is of no use. The apparent contradiction with recent claims that CTC-assisted computers can perfectly distinguish nonorthogonal states is resolved by noting that CTC-assisted evolution is nonlinear, so the output of such a computer on a mixture of inputs is not a convex combination of its output on the mixture's pure components. Similarly, it is not clear that CTC assistance or nonlinear evolution help solve hard problems if computation is defined as we recommend, as correctly evaluating a function on a labeled mixture of orthogonal inputs.Comment: 4 pages, 3 figures. Final version. Added several references, updated discussion and introduction. Figure 1(b) very much enhance

    Trade studies for nuclear space power systems

    Get PDF
    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration
    corecore